Model Paper Physics Objective

Intermediate Part - I (11 ${ }^{\text {th }}$ Class) Examination Session 2012-2013 and onward
Total marks: 17 Paper Code
Time Allowed: $\mathbf{2 0}$ minutes

Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

Q. 1	QUESTIONS	(A)	(B)	(C)	(D)
1	The unit of Pressure in base units is	Kg m ${ }^{-1} \mathrm{Sec}^{-2}$	Kg mSec ${ }^{2}$	$\mathrm{Kg} \mathrm{m} \mathrm{Sec}{ }^{-2}$	Kg m ${ }^{-1} \mathrm{Sec}^{-1}$
2	The complete Equilibrium of a body implies that	$\sum F=0$	$\begin{aligned} & \sum F x=0 \\ & \sum F y=0 \end{aligned}$	$\begin{aligned} & \sum F=o \\ & \sum \tau=0 \end{aligned}$	$\sum \tau=0$
3	At highest point, the vertical component of velocity of Projectile becomes	Maximum	Zero	Minimum	$\mathrm{V}_{\mathrm{i}} \operatorname{Cos}^{\text {e }}$
4	Impulse has the same unit as that of	Force	Energy	Mass	Linear Momentum
5	The Tidal Energy is due to gravitational Pull of the	Sun	Moon	Earth	Mars
6	The rotational K.E. of a disc is	$\frac{1}{2} m v^{2}$	$\frac{1}{4} m v^{2}$	$\frac{1}{6} m v^{2}$	$\frac{1}{8} m v^{2}$
7	Torque per unit Moment of Inertia is Equivalent to	Angular Velocity	Angular Acceleration	Inertia	Radius of Gyration
8	Escape velocity on surface of earth is 11.2 $\mathrm{km} / \mathrm{Sec}^{-1}$. The escape velocity on the Surface of another planet of same mass as that of earth but of $1 / 4$ times the radius of earth is	$5.6 \mathrm{~km} \mathrm{sec}^{-1}$	$11.2 \mathrm{~km} \mathrm{sec}^{-1}$	$\begin{gathered} 22.4 \mathrm{~km} \\ \sec ^{-1} \end{gathered}$	$44.8 \mathrm{~km} \mathrm{sec}^{-1}$
9	The SI unit of flow rate of fluid is	$m^{3} \mathrm{sec}^{-1}$	$\mathrm{m}^{2} \mathrm{sec}^{-1}$	$\mathrm{m}^{2} \sec ^{-2}$	$\mathrm{M}^{3} \mathrm{sec}^{-3}$
10	For a spring mass system arranged horizontally, the instantaneous displacement is	$x=x_{0} \sin w t$	$x=x_{0} \cos w t$	$x=x_{0} \operatorname{Sin}^{2} w t$	$x=x_{0} \cos ^{2} w t$
11	In the time required for the tuning fork to make one complete vibration, the wave in air will travel a distance equal to	$\lambda / 4$	$\lambda / 2$	λ	2λ
12	Velocity of sound is independent of	Temperature	Density	Pressure	Medium
13	Two tuning forks of frequencies 240 Hz and 243 Hz respectively are sounded together, the no. of beats produced per second is	Zero	'2'	'3'	'4'
14	In young's Double slit experiment, the position of Bright fringes are given by Formula,	$\mathrm{Y}_{m}=m \frac{\lambda L}{d}$	$\mathrm{Y}_{m}=m \frac{\lambda d}{L}$	$\mathrm{Y}_{m}=m \frac{L d}{\lambda}$	$\mathrm{Y}_{m}=\frac{m \lambda}{L d}$
15	Final image produced by the compound Microscope is	Real and inverted	Real and erect	Virtual and erect	Virtual and inverted
16	Carnot cycle consists of	Two steps	Three steps	Four steps	Five steps
17	The Internal energy of a piece of lead when beaten by a hammer will	Increase	Decrease	Remain constant	First increase then decrease

(i) Define dimension. Check the correctness of the equation $\quad v=f ~ \lambda b y$ the principle of Homogeneity of dimensions.
(ii) Briefly explain the two drawbacks to use the period of simple pendulum as a time standard.
(iii) Assess the total uncertainty in the final result of a timing experiment with the help of an example.
(iv) Determine the dimensions of pressure and density.
(v) Under what condition would a vector have components that are equal in magnitude.
(vi) Justify the statement "A body cannot rotate about its centre of gravity under the action of its own weight".
(vii) If $\vec{A} \cdot \vec{B}=0$, Can it be concluded that \vec{A} and \vec{B} are perpendicular to each other? Support your answer with a proof.
(viii) Why fog droplets appear to be suspended in air?
(ix) Discuss the sign of acceleration due to gravity for a cricket ball thrown upward, for its upward and downward motion.
(x) Can the velocity of an object reverse the direction when acceleration is constant? Justify with an example.
(xi) It is advisable to fasten the seat belts during a fast drive. Why is it?
(xii) Explain how would a bouncing ball behave in each of an elastic and inelastic collision with floor of room.
3. Write answers of any EIGHT questions. $(8 \times 2=16)$
(i) When a rocket enters the atmosphere, why does its nose cone become very hot? Where does this heat energy come from?
(ii) State the work energy principle. Express it in equation.
(iii) While calculating the Absolute Gravitational potential energy, why is the distance between infinity and surface of earth is divided into very small steps.
(iv) What is meant by moment of Inertia? Give its significance.
(v) How is artificial gravity created in an Artificial satellites.
(vi) Centripetal force and centrifugal reaction are equal in magnitude but opposite in direction. Why these forces do not balance each other.
(vii) What happens to the period of simple pendulum if
(a) its length is doubled
(b) its suspended mass is doubled.
(viii) Show that in SHM, the acceleration is zero when velocity is greatest and the velocity is zero when the acceleration is greatest?
(ix) Why can we not realize an Ideal simple pendulum.
(x) What features do longitudinal waves have in common with transverse waves.
(xi) Why does sound travel faster in solids than in gases?
(xii) Justify the statement "Velocity of sound in a gas is independent of pressure of the gas"

4. Write answers of any SIX questions. ($\mathbf{6 \times 2}=\mathbf{1 2)}$

(i) Define coherent sources of light. How two light beams can be made coherent.
(ii) How is the distance between interference fringes is affected by the separation between the slits of Young's double shit experiment?
(iii) How would you distinguish between unpolarized light and plane polarized light.
(iv) Name and explain any two of major components of a fiber optic communication system.
(v) How the resolving power of a compound microscope can be increased.
(vi) What happens to the temperature of the room, when an air conditioner is left running on a table in the middle of the room.
(vii) What is meant by tripple point of water. What is the value of Absolute temperature of tripple point of water.
(viii) Can the efficiency of a carnot engine be 100% ? Justify your answer with proof.
(ix) Normal Human body temperature is $98.6^{\circ} \mathrm{F}$. Convert it into C^{0} and K.

P.T.O.

SECTION II (Essay Type)

Note:- Attempt any three questions.
 ($8 \times 3=24$)

5. (a) Define Rectangular components of a vector. How two vectors can be added by Rectangular component method.
(b) A ball is thrown with a speed of $30 \mathrm{~m} \mathrm{sec}^{-1}$ in a direction 30° above the horizontal. Determine the height to which it rises. 3
6. (a) What are geostationary orbits. Derive an expression for orbital radius of a Geostationary orbit $1+4$
(b) How large a force is required to accelerate an electron $\left(\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}\right)$ from rest to a speed of $2 \times 10^{7} \mathrm{msec}^{-1}$ through a distance of 5.0 cm . 3
7. (a) What is the limitation of Newton's formula for speed of sound in air. How did Laplace correct it.

1+4
(b) A simple pendulum is 50 cm long. What will be its frequency of vibration at a place where $\mathrm{g}=9.8 \mathrm{~m} \mathrm{sec}^{-2}$

3
8.(a) Explain the principle, construction and Magnifying power of a compound microscope with the help of a ray diagram . $1+2+2$
(b) A light is incident normally on a grating which has 2500 lines $/ \mathrm{cm}$. compute the wavelength of a spectral line for which the deviation in $2^{\text {nd }}$ order is 15°.

3
9.(a) Explain the carnot cycle and calculate the efficiency of a carnot heat engine. $2+3=5$
(b) Water flows through a hose whose internal diameter is 1 cm at a speed of $1 \mathrm{~m} \mathrm{sec}^{-1}$. What should be the diameter of the nozzle if the water is to emerge at 21m sec.

SECTION III (PRACTICAL)

Note:- Give answers to any Four Questions.
$4 \times 2=8$
10.(a) (i) How does the electronic timer measure time of free fall accurately.
(ii) A student measured the diameter of cylinder as 2.45 cm by a vernier calliper having least count +0.01 cm . But later on he observes a zero error in the instrument and finds zero of the vernier scale lies to the right of the zero of principal scale and $4^{\text {th }}$ division of vernier scale faces any division or the principal scale. Find the correct value of diameter of cylinder.
(iii) The wire of sonometer is stretched with a load of 4 kg wt including the hanger and resonant length of wire is found to be 11 cm by using a tuning fork having frequency 512 Hz . If diameter of the wire is doubled, find the resonant frequency of this wire for the same resonating length and same load.
(iv) Find clockwise torque from diagram.

(v) How does the angle of deviation vary with the angle of incidence in case of prism.
(vi) Does the critical angle of a transparent material varies with the colour of light.
(vii) What are the sources of error during the experimental determination of mechanical equivalent of Heat by electrical method.
(viii) Design a table of observations/calculations to prove the law of length by using the vibrations in the string of sonometer.
10.(b) Write down the brief procedure to show experimentally that time period of simple pendulum is independent of amplitude .

OR
Write down the Brief procedure to determine experimentally the focal length of a convex lens by displacement method.
10.(c) Answer the following Question on the basis of graph drawn below.

(i) What can you conclude from the graph 1
(ii) Find the value of "g" from the graph 2
(iii) Measure the length of second's pendulum from the graph 1 OR
Answer the following Question on the basis of graph drawn below.

(i) What is value of " P " corresponding to $1 / \mathrm{q}=\mathrm{os} \mathrm{cm}^{-1}$
(ii) Using a set of values of $1 / \mathrm{p}$ and $1 / \mathrm{q}$ from evaluate foul length.

Assessment Scheme

For Physics 11 ${ }^{\text {th }}$ Part I Session 2012-13 \& ONWARD
Time: 03:30 hrs
Total Marks:- 100

$\begin{aligned} & \text { Sr. } \\ & \text { No } \end{aligned}$	Chapters	Weightage	Distribution of Marks	M.C.Qs				Short Answer Questions			Essay Type Questions			Questions relating to Practicals
				Allotted Marks 17				Allotted Marks 44			Allotted Marks 24			Allotted Marks 15
				Q. to be asked 17 Q. to be attempted 17				Q. to be asked 33 Q. to be attempted 22			Q. to be asked 5 Q. to be attempted 3			Q. to be asked 12 Q. to be attempted 6
				Time 20 Minutes				$\begin{aligned} & Q 2=\text { Chapter } 1,2,3,6=12 S Q \\ & Q 3=\text { Chapter } 4,5,7,8=12 S Q \\ & Q 4=\text { Chapter } 9,10,11=9 S Q \end{aligned}$ Time 3 Hours \& 10 Minutes						
				K	\boldsymbol{U}	\boldsymbol{A}	Total Marks	\boldsymbol{U}	A	Total Marks	\boldsymbol{U}	A	Total Marks	
1	Measurements	8 \%	9	1	-	-	1	1	1	8	-	-	9	Mechanics + Heat (a) SQs. $=3+1=4$ (b) Procedure of any one experiment. (c) Graph Base SQs. Sound and light (a) $\mathrm{SQs}=2+2=4$ (b) Procedure of any one experiment (c) Graph Base SQs.
2	Vector \& Equilibrium	10%	12	1	-	-	1	2	-	6	-	-	12	
3	Motion and force	11%	13	1	1	-	2	1	2	8	-	3	13	
4	Work power \& energy	8%	10	1	-	-	1	1	-	6	-	3	10	
5	Circular motion	11%	14	1	1	1	3	1	-	6	-	-	14	
6	Fluid dynamics	5%	6	1	-	-	1	-	-	2	-	3	6	
7	Oscillations	8%	10	1	-	-	1	2	-	6	-	3	10	
8	Waves	12%	14	1	1	1	3	2	-	6	-	-	14	
9	Physical optics	8 \%	10	1	-	-	1	1	-	6	-	3	10	
10	Optical instruments	8%	10	1	-	-	1	1	-	4	-	-	10	
11	Heat \& thermodynamics	11%	15	1	1	-	2	1	1	8	-	-	15	
Total		100%	123				17			66			40	25

Important Note:- 1) $\mathrm{K}=$ Knowledge. $\mathrm{U}=$ Understanding / Comprehension. A= Application \& Analysis.
2) This scheme of Assessment is prepared as per 33% choice in short answer questions, essay questions \& questions relating to practicals
3) In order to promote the cause of concept based learning at least 10% questions must be unseen or of daily life but relating to specified learning outcomes of Curricula $\&$ Syllabi. This portion will increase @ 10% annually but not more than 30%.
4) The questions relating to practical will be asked from the practical Note Book as per chapter were detail given in the curriculum and syllabi 2006 .
5) The Practical will be conducted at the end of 12^{th} Class which is mandatory to qualify for award of certificate.

The Practical assessment will be made in the form of grading as per following criteria.
$A+=90 \% \&$ above, $A=80 \%$ to $89 \%, B=70 \%$ to $79 \%, C=60 \%$ to $69 \%, D=50 \%$ to $59 \%, E=40 \%$ to $49 \%, F=F a i l=40 \% \&$ below

